Spontaneous switching of permeability changes in a limestone fracture with net dissolution
نویسندگان
چکیده
[1] Results are reported for water flow-through experiments conducted on an artificial fracture in limestone at room temperature and under ambient confining stress of 3.5 MPa. Tests are concurrently monitored for mineral mass loss or gain and for changes in differential pressure between the inlet and outlet, throughout the 1500-hour duration of the experiment. Periodic imaging by X-ray computed tomography augments the fluid and mineral mass balance data and provides a third independent constraint on dissolution processes. The sample is sequentially circulated by water of two different compositions through the 1500-hour duration of the experiment, the first 935 hours by sampled groundwater (pH 8), followed by 555 hours of distilled water (pH 6). Large changes in the differential pressure are recorded throughout the experiment, for the constant flow rate of 2 cm/m; these are used as a proxy for recorded changes in fracture permeability, under invariant effective stress conditions. Mass of Ca and Mg were net-removed throughout the experiment. During the initial circulation of groundwater, the differential pressure increased almost threefold and is interpreted as a net reduction in permeability as the contacting asperities across the fracture are removed and the fracture closes. With the circulation of distilled water, permeability initially reduced threefold and ultimately increased by 2 orders of magnitude as a ‘‘wormhole’’ developed in the sample. This spontaneous switch from net decrease in permeability to net increase occurred with no change in experimental conditions of flow rate or applied effective stress, and Ca was net dissolved throughout. This behavior is attributed to the evolving localization of mass removal, triggered as free-face dissolution outcompetes stress-mediated dissolution at the asperity contacts.
منابع مشابه
A fully-coupled hydrological–mechanical–chemical model for fracture sealing and preferential opening
A fully coupled hydrological–mechanical–chemical (HMC) model is developed and applied to explain enigmatic spontaneous changes in permeability that develop within a fracture in limestone under simulated in situ conditions (Water Resour Res 2004;40:W03502). The water flow-through test was concurrently monitored for water and dissolved mineral mass efflux and periodically imaged by X-ray CT to pr...
متن کاملShort-Timescale Chemo-Mechanical Effects and their Influence on the Transport Properties of Fractured Rock
Anomalous changes in permeability are reported in fractures circulated by fluids undersaturated with respect to the mineral host. Under net dissolution and net removal of mineral mass, fractures may alternately gape or seal, depending on the prevailing mechanical and chemical conditions. The influence on transport properties is observed to be large, rapid, and irreversible: Permeabilities may c...
متن کاملA numerical model simulating reactive transport and evolution of fracture permeability
A numerical model is presented to describe the evolution of fracture aperture (and related permeability) mediated by the competing chemical processes of pressure solution and free-face dissolution/precipitation; pressure (dis)solution and precipitation effect net-reduction in aperture and free-face dissolution effects netincrease. These processes are incorporated to examine coupled thermo-hydro...
متن کاملEvolution of permeability in a natural fracture: Significant role of pressure solution
[1] A mechanistic model is presented to describe closure of a fracture mediated by pressure solution; closure controls permeability reduction and incorporates the serial processes of dissolution at contacting asperities, interfacial diffusion, and precipitation at the free face of fractures. These processes progress over a representative contacting asperity and define compaction at the macrosco...
متن کاملFrom Slots to Tubes: The Influence of Dimensionality on Fracture Dissolution Models
We briefly review the models of fracture dissolution process, discussing the experimental and numerical evidence showing that this phenomenon is inherently two-dimensional and hence cannot be accurately described by one-dimensional models. The physical reason for this incompatibility is that a dissolution front in a single rock fracture is potentially unstable to small variations in local perme...
متن کامل